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Abstract. We investigate the time evolution of entanglement for bipartite systems of arbitrary dimensions
under the influence of decoherence. For qubits, we determine the precise entanglement decay rates under
different system-environment couplings, including finite temperature effects. For qudits, we show how to
obtain upper bounds for the decay rates and also present exact solutions for various classes of states.

PACS. 03.67.-a Quantum information – 03.67.Mn Entanglement production, characterization, and ma-
nipulation – 03.65.Yz Decoherence; open systems; quantum statistical methods

QICS. 02.40.+d Interaction with environment and decoherence – 03.40.+t Thermal/mixed state entan-
glement – 03.10.+m Entanglement measures

1 Introduction

The production of entangled states and the control of their
time evolution became a major issue in current research in
view of the development of quantum information theory,
and all possible applications associated with it. Besides the
formidable experimental advances in this direction, there
remains a main obstacle which is the fragility of entan-
glement under the unavoidable interaction with the envi-
ronment. This coupling of the quantum system with its
surroundings, and the consequent decay of entanglement,
motivates important questions such as to understand its
sources, to identify the characteristic timescales, and, pos-
sibly, to find ways to circumvent it.

To devise appropriate strategies for controlling entan-
gled states under the effect of environment interaction, the
first step is to acquire a deeper understanding of the dy-
namics of the decoherence processes themselves. Despite
the rapidly increasing experimental interest in this sub-
ject, due to the possibility of monitoring entanglement
dynamics [1], most of the theoretical work focused on char-
acterizing static properties of entanglement for quantum
states [2–5].

Only very recently the question of entanglement decay
under environment-induced mixing has been addressed,
for some specific states and environment models, and re-
stricted to the case of two qubits [6–11], probably due to
the lack of a genuine and computable entanglement mea-
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sure for systems larger than that. Nonetheless, new tech-
niques for the derivation of bounds [12,13] of concurrence,
one possible entanglement measure, recently allowed a sys-
tematic study of entanglement dynamics for more general
states, including multipartite [14,15] and multi-level sys-
tems.

These higher dimensional systems are of great inter-
est since they can enlarge the perspectives of efficient ap-
plications in quantum information and can also be used
to test fundamental aspects of quantum theory. In fact,
entangled states of two d-dimensional quantum systems,
the qudits, can improve measurement resolution [16,17]
and are known to violate local realism more strongly than
qubits [18,19]. Moreover, they can be used for quantum
computation [20–23] and also in quantum cryptography
protocols [24,25], which are safer [26,27] than their qubit
counterparts. Despite the importance of such entangled
qudits, reflected in the intense activity on their production
and manipulation in different experimental setups [28–34],
their dynamics under the influence of environment inter-
action remained unexplored until now.

The paper is organized as follows. In Section 2 we will
briefly recall a recently developed approach for calculating
concurrence which allows us to investigate entanglement
between systems of arbitrary dimensions. In Section 3 we
will present the different models which describe the inter-
action of the system with the environment. Section 4 is
devoted to the analysis of the entanglement decay rates
under decoherence processes, starting from the case of bi-
partite qubits. With the available analytical tools, some,
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still unknown, features of the decoherence dynamics are
presented. The section closes with the analysis of bipar-
tite qudits. A summary of the main results of the paper
is presented in the concluding Section 5.

2 Entanglement measure: concurrence

In order to follow the environment-induced time evolution
of entanglement, one needs a measure which satisfactorily
deals with mixed states. A commonly used measure in the
context of two qubits is the concurrence [35], defined for
pure states as

c(Ψ) =
∣
∣
∣〈Ψ∗|σy ⊗ σy|Ψ〉

∣
∣
∣, (1)

where ∗ stands for complex conjugation performed in the
standard, computational basis. For mixed states it can be
formulated as

c(ρ) = inf
{pi,Ψi}

∑

i

pi c(Ψi), (2)

with
pi > 0, and ρ =

∑

i

pi|Ψi〉〈Ψi|. (3)

In contrast to most other measures, equation (2) can be
solved algebraically with the well known solution c(ρ) =
max {λ1 − λ2 − λ3 − λ4, 0}, in terms of the square roots,
λi, of the decreasingly ordered eigenvalues of the matrix
ρ(σy ⊗ σy)ρ∗(σy ⊗ σy).

For higher dimensional systems, we will use the genen-
eralization of concurrence given in [36] that coincides —
though not obviously — with the original concurrence [35]
if restricted to two-level systems. For practical purposes,
it is convenient to express concurrence [37,38] in terms of
an operator A acting on the product space H⊗H of two
copies of the system, as

c(Ψ) =
√

〈Ψ | ⊗ 〈Ψ | A |Ψ〉 ⊗ |Ψ〉. (4)

The operator
A =

∑

α

|χα〉〈χα| (5)

is the projector onto the space spanned by the states |χα〉
that are anti-symmetric with respect to the exchange of
the copies of either H1 or H2, i.e.

|χα〉 = (|ik il〉 − |il ik〉) ⊗ (|jm jn〉 − |jn jm〉) . (6)

The states {|ik〉} and {|jm〉} form, respectively, arbitrary
local bases of H1 and H2, and α is a label for the multi-
index [k, l,m, n].

To extend this construction for the case of mixed
states, one should substitute equation (4) in the convex-
roof, equation (2), which can be written, in terms of sub-
normalized states |ψi〉 =

√
pi|Ψi〉, as

c(ρ) = inf
{ψi}

∑

i

√

〈ψi| ⊗ 〈ψi| A |ψi〉 ⊗ |ψi〉. (7)

Unfortunately, apart from the two-level case where the
operator A can be written in terms of a single vector
|χ〉 = (|01〉 − |10〉) ⊗ (|01〉 − |10〉), no exact solutions for
equations (2) and (7) are known and, hence, one has to
rely on numerical efforts to calculate the concurrence. Also
note that numerical solutions of this optimization proce-
dure define only an upper bound for concurrence, since
there is no a priori information available on whether the
global minimum or just a local one has been reached.

To circumvent this problem, we will use suitable
approximations which provide lower bounds of concur-
rence [12,13] and not only allow for an efficient numerical
approach, but also, in some cases, for exact algebraic solu-
tions. Starting from a decomposition of the density matrix
in terms of pure (subnormalized) states ρ =

∑

i |φi〉〈φi|
and from the vectors |χα〉, one can define a set of matri-
ces Tα, given by1

Tαjk = 〈χα|φj〉 ⊗ |φk〉. (8)

These are connected to the previously defined operator A
through the tensor

Alm
jk =

∑

α

(Tαlm)∗Tαjk = 〈ψl| ⊗ 〈ψm| A |ψj〉 ⊗ |ψk〉. (9)

It was shown in [12] that concurrence is bounded from
below by

c(ρ) ≥ max

{

S1 −
∑

i>1

Si, 0
}

, (10)

where the Si are the decreasingly ordered singular val-
ues of

T =
∑

α

ZαT
α, with

∑

α

|Zα|2 = 1, (11)

that still depend on the choice of the complex parame-
ters Zα. Although any choice provides a lower bound, one
might still wish to carry out an optimization over Zα,
though now on a much smaller parameter space and with
simpler constraints than in equation (7). Moreover, also
each matrix Tα already provides a lower bound, which
can be calculated algebraically.

Finally, let us describe an experimentally motivated
approach to calculate lower bounds of concurrence, the
quasi-pure approximation [13]. Although environmental
influences cannot be avoided completely, under typical ex-
perimental conditions one deals with states which are,
at least initially, quasi-pure. This is, they have a sin-
gle eigenvalue µ1 which is much larger than all the oth-
ers, and an approximation based on this condition can
be developed. Indeed, using the spectral decomposition
ρ =

∑

i µi|Ψi〉〈Ψi| of the density matrix and the previ-
ously defined subnormalized states, one can see that the
elements of A defined in equation (9) are proportional to
the square roots of the eigenvalues µi:

Alm
jk ∝ √

µjµkµlµm. (12)

1 Note that |χα〉 ∈ H1⊗H1⊗H2⊗H2, whereas |φj〉⊗|φk〉 ∈
H1 ⊗H2 ⊗H1 ⊗H2. Nevertheless, the two spaces are isomor-
phic, and it is straightforward to identify the correspondence
between their elements.
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This proportionality and the assumption that µ1 � µi
allows to order the elements of A in powers of the square
roots of µi. Keeping only the leading order terms, i.e., A11

11

at zero order, Aj1
11, A

1j
11, A11

j1 and A11
1j at first order, and

so on, we can approximate A by

Alm
jk � (T (qp)

lm )∗T (qp)
jk , (13)

with

T
(qp)
jk =

A11
jk

√

A11
11

. (14)

Thus the quasi-pure concurrence can be written as

c(ρ) � cqp(ρ) = max

{

S1 −
∑

i>1

Si, 0
}

, (15)

where the Si are the singular values of the matrix T (qp)

defined in equation (14).
With these tools at hand, entanglement in higher di-

mensional systems can be explored in a computationally
manageable way. We will use them to monitor the entan-
glement dynamics under different sources of decoherence.

3 Environment models

We are considering composite quantum systems with con-
stituents separated by distances large enough to assume
that an excitation emitted by one subsystem to the en-
vironment will never be absorbed by another subsystem.
This is typically the case in experiments with trapped ions
or atoms, where is therefore legitimate to assume that each
subsystem interacts only, and independently, with its lo-
cal environment. The dynamics under such decoherence
process can be described by the master equation

dρ

dt
= (�⊗ L + L ⊗ �) ρ, (16)

where ρ is the reduced density operator of the system.
Since all subsystems are of the same kind, e.g. atoms or
ions of the same isotope, the interactions of each compo-
nent of the system with the environment are of of the same
form, represented by the same local Lindblad operator L.
Under the — in typical experiments well justified — as-
sumption of Markovian dynamics, and the fundamental
requirement of complete positivity, the action of L on ρ
reads

Lρ =
∑

i

Γi
2

(

2LiρL
†
i − L†

iLiρ− ρL†
iLi

)

. (17)

The operators Li and the rates Γi are determined by the
underlying coupling mechanisms of a specific experiment.
Though, the very general form of equation (17) allows to
describe various physical situations, such as dissipation
of systems with higher effective temperature than that of
the environment, or heating in the opposite case. But also

the mere loss of phase can be described within the same
framework.

For two-level systems, the operators Li can be written
in terms of the Pauli matrices. In the case of an interaction
with a thermal bath, the Lindblad operator reads

Lρ =
Γ (n̄+ 1)

2
(2σ−ρσ+ − σ+σ−ρ− ρσ+σ−)

+
Γ n̄

2
(2σ+ρσ− − σ−σ+ρ− ρσ−σ+) . (18)

In this equation, the first and the second term on the right
hand side describe, respectively, decay and excitation pro-
cesses (mediated by the two-level excitation and deexcita-
tion operators σ+ and σ−), with rates which depend on the
temperature, here parametrized by n̄, the average thermal
excitation of the reservoir. In the zero temperature limit,
n̄ = 0, only the spontaneous decay term survives, leading
to a purely dissipative process, which corresponds to the
fundamental limiting factor for the coherent evolution of
atomic qubits. Noisy dynamics corresponds to the infinite
temperature limit, where n̄ → ∞, and, simultaneously,
Γ → 0, so that Γ n̄ ≡ Γ̃ is constant. In this case, decay
and excitation occur at exactly the same rate, and the
noise induced by the transitions between the two levels
brings the system to a stationary, maximally mixed state.
Finally, a purely dephasing reservoir is obtained by choos-
ing Li = d = σ+σ−, leading to the master equation

dρ

dt
=
Γ

2
(2σ+σ−ρσ+σ− − σ+σ−ρ− ρσ+σ−) . (19)

In this case, only the off-diagonal elements of the density
matrix decay, and phase coherence is lost. This dephasing
mechanism is known to be an important source of deco-
herence in ion traps [39,40] and in quantum dot experi-
ments [41–43].

If we consider a system of qudits, the operators Li
in equation (17) cannot be written anymore in terms of
Pauli matrices. To describe the effect of the environment
in such systems, we will consider the qudits as two bosonic
modes, with an equidistant spectrum, and truncated bases
of length d. The terms n and m in the general (pure)
state |ψ〉 =

∑d−1
n,m=0 ψnm|nm〉 then indicate the occupa-

tion number in each of these modes. Decay and excitation
processes now correspond to the action of annihilation and
creation operators a and a†, analogous to the σ− and σ+

for qubits. With this convention, the thermal and dephas-
ing environments are described, respectively, by

Lρ =
Γ (n̄+ 1)

2
(

2aρa† − a†aρ− ρa†a
)

+
Γ n̄

2
(

2a†ρa− aa†ρ− ρaa†
)

, (20)

and

Lρ =
Γ

2
(

2a†aρa†a− a†aρ− ρa†a
)

. (21)

Zero and infinite temperature limits are obtained as in
the qubit case, and represent, to a very good approxi-
mation, the decoherence processes of photons in high-Q
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cavities [44], and of motional degrees of freedom in ion
traps [45].

4 Entanglement dynamics under decoherence

4.1 Two qubits case

We shall begin our analysis with the case of two qubits,
since it allows for analytical solutions, and can provide
some intuition of the processes at work in higher dimen-
sional systems. To provide a more complete and system-
atic description of the time scales of entanglement decay
under environment interaction, we will recall some known
results for the case of dephasing and zero temperature
reservoirs, and furthermore derive exact solutions when
finite temperature effects are taken into account.

Let us start with initially prepared Bell states |Ψ±〉 =
(|01〉 ± |10〉) /

√
2, and |Φ±〉 = (|00〉 ± |11〉) /

√
2. Their

concurrencies as a function of time are given by

c(Ψ±, t) = c(Φ±, t) = e−Γt, (22)

for the dephasing environment, and by

c(Ψ±, t) = e−Γt, c(Φ±, t) = e−2Γt, (23)

for the zero temperature case. The first important obser-
vation is the accelerated (by a factor of two) decay of
concurrence for the Φ± as compared to the Ψ± states,
under the influence of a zero temperature environment.
This can be understood from the time scales involved in
the corresponding solution for the density matrix: while
for Ψ± each term |01〉 and |10〉 corresponds to a single
particle decay, leading to a time scale e−Γt, we have the
term |11〉 in Φ±, such that both particles can undergo an
environment induced transition to the ground state, thus
introducing a faster, e−2Γt, decay.

Also for the finite temperature case can an explicit
solution be calculated for initial Bell states: it reads

c(t) = max {cT (t), 0} , (24)

where the function cT (t), for Ψ± and Φ± states, is given,
respectively, by

cT (Ψ±, t) =

β −
2(1 − β)

√

(n̄2 + n̄)2 (β + 1)2 + β(n̄2 + n̄)

(2n̄+ 1)2
, (25)

and

cT (Φ±t) = β +
[2n̄(n̄+ 1) + 1]β2 − β − 2n̄(n̄+ 1)

(2n̄+ 1)2
, (26)

with β = e−Γ (2n̄+1)t. These expressions, which reveal the
precise role of temperature on the decay of entanglement
of Bell states, show that, distinct from the cases of de-
phasing and zero temperature environments, concurrence

does not decay according to a simple mono-exponential
law, but rather exhibits various time scales.

To apprehend the essential features of temperature ef-
fects on entanglement decay, it is useful to focus on the
short time limit of these equations [46]. Expanding equa-
tions (25) and (26) to first order in t, one finds that the
short time concurrence decay is given by

c(Ψ±, t) � 1 −
(

2n̄+ 1 + 2
√

n̄(n̄+ 1)
)

Γt, (27)

and
c(Φ±, t) � 1 − 2(2n̄+ 1)Γt. (28)

This shows that, at the beginning of the evolution, a fi-
nite temperature reservoir increases the concurrence decay
rate, as compared to the zero temperature case, by a fac-
tor of

(

2n̄+ 1 + 2
√

n̄(n̄+ 1)
)

and of (2n̄+1), for Ψ± and

Φ± states, respectively.
From equations (25) and (26), one can also derive

the infinite temperature limit (n̄ → ∞, Γ → 0, with
Γ n̄ ≡ Γ̃ = const.) of the thermal bath. In this case, the
concurrence becomes

c(Ψ±, t) = c(Φ±, t) = max

{

e−4Γ̃ t

2
+ e−2Γ̃ t − 1

2
, 0

}

.

(29)
Note that, again, entanglement dynamics involves differ-
ent time scales. However, a single exponential captures the
basic behavior of entanglement decay, since equation (29)
can be well fitted by a function in the form αe−γt+δ, with
negative offset δ. Consequently, separability, i.e. c(t) = 0,
is reached at finite times for the infinite temperature en-
vironment, as well as for any n̄ > 0. This is in contrast to
the above dephasing and zero temperature environments,
where separability is reached only asymptotically, and fol-
lows from the long-time limit for cT (t) in equation (24)

lim
t→∞ cT (t) = −2n̄(n̄+ 1)

(2n̄+ 1)2
, (30)

which is non-positive for all n̄ > 0. The exact expressions
for this separability time can be easily obtained from the
condition c(t) = 0, and are of the form

tsep = ln [f(n̄)]/Γ (2n̄+ 1),

where the function f(n̄) depends on the initial state Ψ± or
Φ±. Observe, however, that this is not true for arbitrary
initial states. Indeed, some initially mixed states [9] as
well as some pure non-maximally entangled states, e.g.,
|ψ〉 = 1

2 |00〉 + 1
2 |01〉 + 1√

2
|11〉, reach separability on finite

time scales even for a zero temperature environment.

4.2 Two qudits case

As the dimensions of the subsystems increase, not only a
general analytical solution is unknown, but also the nu-
merical approach to obtain reliable estimates of concur-
rence rapidly turns into a very demanding task. However,
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it is exactly in this situation where the strength of the
tools derived in Section 2, for calculating lower bounds
of concurrence, becomes manifest. We will devote the re-
mainder of this paper to a systematic analysis of entan-
glement dynamics in bipartite qudits, using these tools.
In particular, we will extract bounds for the decay rates
of entanglement, and also show how one can infer ana-
lytical solutions even for arbitrary dimensions, from the
knowledge of the dynamics of the system.

4.2.1 Dephasing environment: an exactly solvable example

We begin our analysis with the dephasing dynamics de-
scribed by equation (21), which, as discussed in Section 3,
induces a decay of the off-diagonal elements of the den-
sity matrix without changing the diagonal ones. Besides
its importance in the description of different physical situ-
ations, as already mentioned before, the dephasing model
is very instructive since it allows for obtaining analytical
solutions for the concurrence of some classes of states.

Let us first assume that the initial pure state is of the
form |ψ〉 = a|m1m2〉 + b|n1n2〉, what comprises two-level
Bell states as special cases. In this situation, one can write
the solution of equation (21) as

ρ(t) = |a|2|m1m2〉〈m1m2| + |b|2|n1n2〉〈n1n2|
+ e−γtab∗|m1m2〉〈n1n2| + e−γta∗b|n1n2〉〈m1m2|, (31)

with

γ =
Γ

2
[

(m1 − n1)2 + (m2 − n2)2
]

. (32)

(Note that pure dephasing does not decrease the average
excitation of the system.) There is just one decaying ele-
ment (and its conjugate) in the density matrix evolution
and, therefore, one expects that the entanglement decay
rates should follow the same behavior. This is indeed the
case, as we will show using the techniques described in Sec-
tion 2: first, one can easily check that the mixed state (31)
can be decomposed into contributions of two pure states,

|φ1〉 =
√
p (a|m1m2〉 + b|n1n2〉) , (33)

and

|φ2〉 =
√

1 − p
(

a|m1m2〉 − b|n1n2〉
)

, (34)

with p = (1 + e−γt)/2, and ρ = |φ1〉〈φ1| + |φ2〉〈φ2|. From
the structure of this decomposition, one can see that,
among all |χα〉, only |χ〉 = (|m1n1〉− |n1m1〉)⊗ (|m2n2〉−
|n2m2〉) gives a non-zero contribution for Tα in equa-
tion (8). In this case, the concurrence can be expressed
in terms of a single matrix T , which reads

T =
(

2pab 0
0 2(p− 1)ab

)

.

Thus the formal structure of two-level systems is retrieved,
and the lower bound, equations (10) and (11), is exact.

From the singular values of the matrix T , one readily ob-
tains

c(t) = 2|ab|e(−Γt/2)[(m1−n1)
2+(m2−n2)

2], (35)

which is equal to the sum of the absolute values of the two
non-vanishing off-diagonal elements of ρ(t).

4.2.2 Zero temperature environment: exact solutions,
and estimates

Although there are no a priori criteria from which to in-
fer the existence of exact solutions like equation (35) in
general, this is still possible for a large variety of phys-
ical situations. For a zero temperature environment, for
example, exact solutions can be derived based on a given
form of the decomposition of ρ. Moreover, even if such
decomposition does not exist, it is still possible to obtain
estimates on the decay rates of concurrence with the tools
described in Section 2.

To illustrate this, we start with states of the form |ψ〉 =
a|0m〉+b|m0〉 and consider, for the derivation of the exact
solution, the case of three-level systems and a = b = 1/

√
2.

The decomposition of ρ(t) in terms of its eigenstates (with
non-vanishing eigenvalues) reads

|φ1〉 = e−Γt (|02〉 + |20〉) /
√

2 (36)

|φ2〉 =
√

e−Γt (1 − e−Γt)|01〉, (37)

|φ3〉 =
√

e−Γt (1 − e−Γt)|10〉, (38)

and

|φ4〉 =
(

1 − e−Γt
)

|00〉. (39)

All these states, with the exception of |φ1〉, are separable.
Therefore, from equation (2), one can see that the con-
currence of |φ1〉 is an upper bound of c(ρ). Moreover, this
term is also the only one that gives a non-vanishing con-
tribution to the matrix T (qp), equation (14), in the quasi-
pure approximation. Hence, lower and upper bounds co-
incide and the solution c(t) = e−2Γt is exact. For the state
|ψ〉 = a|0m〉+ b|m0〉 the demonstration is analogous, and
the concurrence is given by

c(t) = 2|ab|e−mΓt. (40)

From the time-dependent matrix elements of ρ, which
can be obtained from equation (20) with n̄ = 0, one can
see that, as in equation (35), concurrence is simply given
by the sum of the absolute values of the only two non-
vanishing off-diagonal elements of ρ. However, we should
emphasize that this only happens in special cases alike
the present one and, in general, there is no simple rela-
tion between the decay of off-diagonal elements of ρ and
concurrence.

An example where such a simple relation does not
exist, even though an exact solution is possible, is the
zero temperature dynamics of initial states of the form
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|ψ〉 = a|00〉 + b|mm〉. The time-dependent density ma-
trix can be decomposed as ρ = ξ + η, with η di-
agonal in the {|ij〉} basis (and thus separable), and
ξ =

∑
〈ij|ρ|pq〉|ij〉〈pq| with i, j, p, q ∈ {0,m}. From this

argument and from equation (2) it follows that the con-
currence of ξ is an upper bound of c(ρ). Furthermore, ξ is
a two-qubit-like matrix and its concurrence can be readily
obtained as

c(t) = 2e−mΓt
(

|ab| −
(

1 − e−Γt
)m |b|2

)

. (41)

This result coincides with the quasi-pure approximation of
c(ξ), calculated using |χ〉 = (|0m〉− |m0〉)⊗ (|0m〉− |m0〉)
in equations (8, 9, 15), and hence is exact.

It is clear from equation (41) that the entanglement
decay, in this case, encompasses different time scales for
d > 2, while the only non-zero off-diagonal elements,
〈00|ρ|mm〉 and 〈mm|ρ|00〉, decay as e−mΓt. Note also
that, in the limit of large m, the concurrence tends to
c(t) = 2|ab|e−mΓt and then coincides with the result
of equation (40). Thus, in this limit, the state |ψ〉 =
a|00〉 + b|mm〉 decays as the state |ψ〉 = a|0m〉 + b|m0〉.
This shows that the robustness of the Ψ± Bell states as
compared to the Φ± in terms of decay rates in the two
qubit case (see Eq. (23)) fades away for larger dimensions.

In the two previous examples, exact solutions were pos-
sible because ρ could be decomposed into a separable part,
and a non-separable two-level-like complement, for which
upper and lower bounds coincide. Although, at first sight,
one might judge these conditions to be rather restrictive,
the above considerations can also be applied to other en-
vironment models and qubit-like initial states. However,
what happens when such decomposition does not exist?
How much information on the decay rates can we extract
with the available tools?

To help to answer these questions let us focus on
the situation shown in Figure 1, where an analyti-
cal solution could not be found. For the initial state
|ψ〉 = (|12〉 + |21〉) /

√
2, upper (2) and optimized lower

bounds (10, 11), as well as quasi-pure calculations (15),
are presented in the upper panel of the figure, as circles,
crosses, and squares, respectively. The solid lines repre-
sent the quasi-pure approximations for initial states of the
form |ψ〉 = (|1m〉 + |m1〉) /

√
2, with m = d− 1 and, from

top to bottom, d = 4 to d = 7. Note that the quasi-
pure approximations are calculated only until times when
the initially largest eigenvalue λ1 coincides with the sec-
ond one (see the lower panel of Fig. 1 for the case d = 3).
The quasi-pure solutions exhibit a simple time dependence
e−(m+1)Γt. For d = 3, we can go further and use also the
numerically calculated upper bound, which in this case
is found (through curve fitting) to behave as e−2Γt, to
confine the actual value of the decay rate to the inter-
val 2Γ ≤ γ ≤ 3Γ . Furthermore, we can state that, for
arbitrary dimensions, the decay rate cannot exceed the
value given by the quasi-pure approximation, which, in
the present case, leads to γ ≤ Γd. This is a noticeable
asset of our analysis. Even if the high dimension of the
system, together with the complex structure of the states,
does not allow to determine the precise decay rates of

Fig. 1. Top panel: optimized upper (circles) and lower
(crosses) bounds of concurrence, as well as quasi-pure approx-
imation (squares), for the initial state |ψ〉 = (|12〉 + |21〉) /√2
coupled to a zero temperature reservoir. The solid lines
show the quasi-pure approximations for initial states |ψ〉 =
(|1m〉 + |m1〉) /√2, with m = d − 1 and, from top to bottom,
d = 4 to d = 7. Quasi-pure solutions behave as e−(m+1)Γt, and
the upper bound for d = 3 is correctly fitted by e−2Γt. Bottom
panel: eigenvalues of the density matrix ρ(t) as a function of
time, for d = 3. Quasi-pure results coincide with the optimized
lower bound, and are indicated only for times during which λ1

remains the largest eigenvalue.

entanglement in the general case, we can extract useful
information on their bounds.

4.2.3 Decay of maximally entangled states

In the previous two sections, we described how the entan-
glement of some classes of states decay under dephasing
and damping environments. The particularly simple forms
of those states were useful not only to demonstrate the
potential of our approach, but also to allow for a direct
comparison with the decay of two qubits. All the initial
qudit states considered so far have the same amount of en-
tanglement as a Bell state, but the possibility of exploring
the higher dimensionality induces a faster decay, as shown
by equations (35, 40), and (41). Therefore, from the point
of view of fragility of entanglement, our results show that
the above classes of states cannot outperform the slowest
decaying Bell state.

However, to be fair with higher dimensional systems,
one should consider not only the undesirable effect of in-
crease in the decay rates, but also the benefit of possibly
having a larger amount of entanglement in the initial state.
For this purpose, we analyzed the dynamics of maximally
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Fig. 2. Concurrence decay for maximally entangled initial
states |ψ〉me, equation (42), under a dephasing reservoir. The
bold solid line shows concurrence for d = 2, while solid and
dashed lines correspond to the quasi-pure approximation for
d = 3 and d = 4, respectively. Larger amounts of entangle-
ment inscribed in a higher dimensional initial state need to be
harvested immediately, since they quickly fade away.

entangled initial states

|ψ〉me =
1√
d

d−1∑

k=0

|kk〉, (42)

and compared their decay for different dimensions.
In Figure 2 we show the time evolution of the quasi-

pure approximation for |ψ〉me in d = 2 (bold solid line),
d = 3 (solid line), and d = 4 (dashed line), for a dephas-
ing environment (for the zero temperature case the situ-
ation is similar). Apparently, there is a trade-off between
the increase in the initial entanglement and the enhanced
decay rates, both provided by higher dimensionality. For
t = 0, which corresponds to the idealized case of pure
maximally entangled states, it is always advantageous to
increase the dimensionality, and, consequently, the entan-
glement. However, already in the presence of dephasing,
this gain is ruined after some time, showing that the use
of the states |ψ〉me in higher dimensions is only favourable
for Γt� 1, i.e., for weak coupling or short times.

4.2.4 Finite temperature environment

Finally, let us briefly present a situation where the ability
to handle higher dimensional systems is essential: the fi-
nite temperature reservoir. Any initial state will evolve
asymptotically into a thermal state, which can be de-
scribed by a finite number of levels. This number however
increases with temperature.

The decoherence effect of such environment on qudits
is illustrated in Figure 3, for an initial state |ψ〉 = (|01〉+
|10〉)/

√
2. The solid, dashed and long-dashed lines repre-

sent, respectively, the two-qubit solution, equation (25),

Fig. 3. Finite temperature effects on the decay of entangle-
ment, for an initial Bell state Ψ+. Solid, dashed and long
dashed lines indicate, respectively, the two-level case solutions
of equation (18), given by equation (25), for n̄ = 0.1, n̄ = 0.2,
and the infinite temperature limit. Circles, squares and crosses
show the corresponding quasi-pure results for the qudits’ dy-
namics given by equation (20), using a truncated basis with
d = 8. For comparison, also the solution for a zero tempera-
ture environment is shown (bold line). The expected enhance-
ment of the decay rates with increasing temperature is more
pronounced in the higher dimensional case.

for n̄ = 0.1, n̄ = 0.2, and the infinite temperature limit.
The corresponding quasi-pure estimates for the same ini-
tial state evolving under equation (20) are given by circles,
squares and crosses. The bold solid curve indicates, for
comparison, the zero temperature evolution. The dimen-
sion used in the simulations (d = 8) was chosen to be large
enough to describe the dynamics of the system for n̄ = 0.1
and n̄ = 0.2, for the times considered in the figure. Note
that for the infinite temperature case actually an infinite
basis is needed, and that our truncated basis set allows
for a correct description of the dynamics only for a short
period of time (Γ̃ t ≈ 0.06), as long as the dynamics do
not populate levels at the boundary of the Hilbert space.

The most noticeable effect here is that the expected
enhancement of the decay rates with temperature is more
pronounced for qudits than for qubits. As a matter of fact,
this is not too surprising since the dynamics of a finite tem-
perature bath, given by equation (20), induces transitions
to many different levels, thus speeding up entanglement
decay.

5 Conclusions

The present paper contributes to the understanding of
entanglement dynamics under environment coupling, for
two qudit-systems. Although no analytical solutions are
available in general, we have shown that they can be ob-
tained for different classes of initial states and dynamics.
Moreover, we have shown how suitable decompositions of
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the density matrix, together with methods for calculating
lower bounds of concurrence, can be useful to decide on
the existence of exact solutions and to derive them for
concurrence or its lower bounds. For more general cases
in high dimensional systems, we were able to derive upper
bounds for the decay rates of entanglement.

Using the above techniques were able to estimate, and
in some cases exactly derive, the time scales for entan-
glement decay in multi-level systems. Our results shows
that decay rates for qudits are not only larger than the
corresponding qubit ones, but also more sensitive to finite
temperature effects. We have also shown that the advan-
tage of increasing dimensionality to obtain higher entan-
glement for pure states is rapidly suppressed when envi-
ronment interactions are taken into account. The use of
maximally entangled states in higher dimensions is there-
fore only justified in the case of weak coupling, or for short
times.

Future work will focus on error estimates for the em-
ployed estimates of concurrence in higher dimensions.

References

1. C.F. Roos, G.P.T. Lancaster, M. Riebe, H. Häffner, W.
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Wunderlich, J.M. Raimond, S. Haroche, Phys. Rev. Lett.
77, 4887 (1996)

45. Q.A. Turchette, C.J. Myatt, B.E. King, C.A. Sackett, D.
Kielpinski, W.M. Itano, C. Monroe, D.J. Wineland, Phys.
Rev. A 62, 053807 (2000)

46. R. Guzmán, J.C. Retamal, J.L. Romero, C. Saavedra,
Phys. Lett. A 323, 382 (2004)


